Scientific Revolution

From Wikiquote
Jump to: navigation, search

The scientific revolution was the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology, medicine, and chemistry transformed views of society and nature. The scientific revolution has been claimed to have begun in Europe towards the end of the Renaissance era and continued through the late 18th century, influencing the intellectual social movement known as the Enlightenment. However, there exist current arguments that the revolution was a tipping point reached through a gradual emergence of civilization, resulting from the efforts of mankind throughout the world, a merging of the manual with the cerebral, and of practice, experimentation, and the growth of technology with theory.

Quotes[edit]

  • In... "The Portuguese Discoveries and the Rise of Modern Science", Prof. Hooykaas supported the thesis "That the Portuguese seafarers and scientists of the 15th and 16th centuries made an important contribution to the rise of modern science by unintentionally undermining the belief in scientific authorities and by strengthening the confidence in the empirical, natural-historic method". ...Prof. Hooykaas analyzed the meaning of "natural science" in Antquity and the Middle Ages... characterized by too great a confidence in human reason and a sacred respect for what the authorities in the ancient world had written. ...In 1956, Prof. Hooykaas had already affirmed that "the discovery of the New World caused many difficulties to naturalists and historians..." ...botanical species of medical interest warned that Dioscorides and Galen had not known everything; ...Portuguese seamen had clarified many doubts and shown the existence of the antipodes etc..
  • Concerning ourselves we speak not; but as touching the matter which we have in hand, this we ask;—that men deem it not to be the setting up of an Opinion, but the performing of a Work; and that they receive this as a certainty; that we are not laying the foundations of any sect or doctrine, but of the profit and dignity of mankind:—Furthermore, that being well disposed to what shall advantage themselves, and putting off factions and prejudices, they take common counsel with us, to the end that being by these our aids and appliances freed and defended from wanderings and impediments, they may lend their hands also to the labours which remain to be performed:—And yet, further, that they be of good hope; neither feign and imagine to themselves this our Reform as something of infinite dimension and beyond the grasp of mortal man, when, in truth, it is of infinite errour, the end and true limit; and is by no means unmindful of the condition of mortality and humanity, not confiding that such a thing can be carried to its perfect close in the space of one single age, but assigning it as a task to a succession of generations.
  • Though Lavoisier generally gets credit for the authorship of this principle [ conservation of mass ], others had conceived it before him, The seventeenth century chemysts, notably Helmont, Starkey, and Boyle, had a dawning awareness of the importance of weighing and measuring materials before and after an experimental process, though their methods and measurement devices were not so precise. In 1623, Francis Bacon declared, "..when they percieve that a body which was before manifest to the senses has escaped and disappeared, they should not admit or liquidate the account before it has been shown to them where the body has gone to and into what it has been received." And as early as 450 B.C., Anaxagoras argued, "Wrongly do the Greeks suppose that aught begins or ceases to be; for nothing comes into being or is destroyed; but all is an aggregation or secretion of preexisting things; so that all becoming might more correctly be called becoming mixed, and all corruption, becoming separate."
  • The credit of first using the telescope for astronomical purposes is almost invariably attributed to Galilei, though his first observations were in all probability slightly later in date than those of Harriot and Marius, is to a great extent justified by the persistent way in which he examined object after object, whenever there seemed any reasonable prospect of results following, by the energy and acuteness with which he followed up each clue, by the independence of mind with which he interpreted his observations, and above all by the insight with which he realised their astronomical importance.
  • The gloriously romantic universe of Dante and Milton, that set no bounds to the imagination of man as it played over space and time, had now been swept away. Space was identified with the realm of geometry, time with the continuity of number. The world that people had thought themselves living in—a world rich with colour and sound, redolent with fragrance, filled with gladness, love and beauty, speaking everywhere of purposive harmony and creative ideals—was crowded now into minute corners in the brains of scattered organic beings. The really important world outside was a world hard, cold, colourless, silent, and dead; a world of quantity, a world of mathematically computable motions in mechanical regularity. The world of qualities as immediately received by man became just a curious and quite minor effect of that infinite machine beyond.
  • From the thick darkness of the middle ages man's struggling spirit emerged as in new birth; breaking out of the iron control of that period; growing strong and confident in the tug and din of succeeding conflict and revolution, it bounded forwards and upwards with restless vigour to the investigation of physical and moral truth; ascending height after height; sweeping afar over the earth, penetrating afar up into the heavens; increasing in endeavour, enlarging in endowment; every where boldly, earnestly out-stretching, til, in the AUTHOR of the PRINCIPIA, one arose, who, grasping the master-key of the universe and treading its celestial paths, opened up to the human intellect the stupendous realities of the material world, and, in the unrolling of its harmonies, gave to the human heart a new song to the goodness, wisdom, and majesty of the all-creating, all-sustaining, all-perfect God.
  • The clash between reason and Portuguese experience. Hooykaas' starting point is the intellectual challenge which, from the early 15th century onward, was posed by the discoveries of the Portuguese mariners... There follows an array of fascinating accounts of, and quotations from, works by contemporary authors who were compelled to face as facts numerous phenomena the ancients had been quite sure could not possibly be observed because they were bound not to exist. Examples are Aristotle's denial that the tropics could be inhabited; Ptolemy's mathematically derived conviction that all dry land is confined to part of the Northern Hemisphere, and so on. ...In Hooykaas' view we are witnessing here a birth of 'natural history' in the domain of the hard and given fact... The narrow world of sense-data to which the ancient natural philosophers had confined their all-too-rational speculations was now being blown to pieces. And this was not being done by fellow natural philosophers, but rather at the urging of scarcely literate sailors!
    • H. Floris Cohen, The Scientific Revolution: A Historiographical Inquiry (1994)
  • Galileo had the experience of beholding the heavens as they actually are for perhaps the first time, and wherever he looked he found evidence to support the Copernican system against the Ptolemaic, or at least weaken the authority of the ancients. This shattering experience—of observing the depths of the universe, of being the first mortal to know what the heavens are actually like—made so deep a an impression... that it is only by considering the events of 1609... that one can understand the subsequent direction of his life.
  • His conflict with the Catholic Church arose because deep in his heart Galileo was a believer. There was for him no path of compromise, no way to have separate secular and theological cosmologies. If the Copernican system was true as he believed, what else could Galileo do but fight with every weapon he had in his arsenal... to make his Church accept a new system of the universe. ...In the contrast between Galileo's heroic stand when he tried to reform the cosmological basis of orthodox theology and his humbled, kneeling surrender when he disavowed his Copernicanism, we may sense the tremendous forces attendant on the birth of modern science.
  • Although the authority of the ancient authors as the arbiters of all scientific knowledge had obviously been severely weakened, it did not immediately crumble. Too many professional, medical, ecclesiastical, and legal careers were founded on that authority for it to simply disappear without a struggle. The scientific elite resisted the infusion of new natural knowledge with all its might, but in the long run, its rearguard efforts were futile. ...The common sense of the working people prevailed and brought about the changes in worldview that have come to be known as the Scientific Revolution.
    • Clifford D. Conner, A People's History of Science (2005)
  • Koyré's exaltation of the "Platonic and Pythagorean" elements of the Scientific Revolution... was based on a demonstrably false understanding of how Galileo reached his conclusions. Koyré asserted that Galileo merely used experiments as a check on the theories he devised by mathematical reasoning. But later research has definitively established that Galileo's experiments preceeded his attempts to give a mathematical account of their results.
    • Clifford D. Conner, A People's History of Science (2005)
  • After sketching his program for the scientific revolution that he foresaw, Bacon ends his account with a prayer: "Humbly we pray that this mind may be steadfast in us, and that through these our hands, and the hands of others to whom thou shalt give the same spirit, thou wilt vouchsafe to endow the human family with new mercies". That is still a good prayer for all of us as we begin the twenty-first century.
  • The great question for our time is, how to make sure that the continuing scientific revolution brings benefits to everybody rather than widening the gap between rich and poor. To lift up poor countries, and poor people in rich countries, from poverty, to give them a chance of a decent life, technology is not enough. Technology must be guided and driven by ethics if it is to do more than provide new toys for the rich.
    • Freeman Dyson, Progress In Religion (2000)
  • Science as subversion has a long history. ...Davis and Sakharov belong to an old tradition in science that goes all the way back to the rebels Benjamin Franklin and Joseph Priestley in the eighteenth century, to Galileo and Giordano Bruno in the seventeenth and sixteenth. If science ceases to be a rebellion against authority, then it does not deserve the talents of our brightest children. ...We should try to introduce our children to science today as a rebellion against poverty and ugliness and militarism and economic injustice.
  • Although many historians of the new millennium now take issue with the notion of a Scientific Revolution, it is generally agreed that Newton's work culminated the long development of European science, creating a synthesis that opened the way for the scientific culture of the modern age.
    • John Freely, Before Galileo: The Birth of Modern Science in Medieval Europe (2012)
  • I mentally conceive of some moveable [sphere] projected on a horizontal plane, all impediments being put aside. Now it is evident... that equable motion on this plane would be perpetual if the plane were of infinite extent, but if we assume it to be ended, and [situated] on high, the movable, driven to the end of this plane and going on further, adds on to its previous equable and indelible motion, that downward tendency which it has from its heaviness. Thus, there emerges a certain motion, compounded...
  • It seems to me proper to adorn the Author's thought here with its conformity to a conception of Plato's regarding the determination of the various speeds of equable motion in the celestial motions of revolution. ...he said that God, after having created the movable celestial bodies, in order to assign to them those speeds with which they must be moved perpetually in equable circular motion, made them depart from rest and move through determinate spaces in that natural straight motion in which we sensibly see our moveables to be moved from the state of rest, successively accelerating. And he added that these having been made to gain that degree [of speed] which it pleased God that they should maintain forever, He turned their straight motion into circulation, the only kind [of motion] that is suitable to be conserved equably, turning always without retreat from or approach toward any pre-established goal desired by them. The conception is truly worthy of Plato, and it is to be more esteemed to the extent that its foundations, of which Plato remained silent, but which were discovered by our Author in removing their poetical mask or semblance, show it the guise of a true story.
    • Galileo Galilei Two New Sciences (1638) Tr. Stillman Drake, Day Four, 283-284 Sagredo speaking
    • I. Bernard Cohen's thesis: Galileo believed only circular (not straight line) motion is conserved (perpetual), see The New Birth of Physics (1960)
  • J. Kepler was the first (that I know of) that discover'd the true cause of the Tide, and he explains it largely in his Introduction to the Physics of the Heavens, given in his Commentaries to the Motion of the Planet Mars, where after he has shewn the Gravity or Gravitation of all Bodies towards another, he thus writes: "The Orb of the attracting Power, which is in the Moon is extended as far as the Earth, and draws the Waters under the Torrid Zone, acting upon places where it is vertical, insensibly on included Seas, but sensibly on the Ocean, whose Beds are large, and the Waters have the liberty of reciprocation, that is, of rising and falling"; and in the 70th Page of his Lunar Astronomy,—"But the cause of the Tides of the Sea appear to be the Bodies of the Sun and Moon drawing the Waters of the Sea."
    • David Gregory, The Elements of Astronomy, Physical and Geometrical J. Nicholson (1715) Vol.2 p.668
  • The Portuguese had undertaken their voyages towards the southern hemisphere in spite of the science of their day... they followed an irresistible urge, which went against their scientific and religious convictions.
  • Our thesis now is that the Portuguese seafarers and scientists of the 15th and 16th centuries made an important contribution to the rise of modern science by unintentionally undermining the belief in scientific authorities and by strengthening the confidence in an empirical, natural, historical method.
    • Reijer Hooykaas, "The Portuguese Discoveries and the Rise of Modern Science" in Selected Studies in History of Science (1983)
  • Perhaps there is no literature in Europe that mirrors so clearly as the Portuguese, the painful conflict in the minds of people who, on the one hand, by their humanistic education, not only knew better but also more uncritically admired, ancient learning than their medieval predecessors, and, who, on the other hand, in the same epoch, were confronted with abundant proofs of the insufficiency and fallibility of that same Antiquity.
    • Reijer Hooykaas, "The Portuguese Discoveries and the Rise of Modern Science" in Selected Studies in History of Science (1983)
  • In the early decades of the seventeenth century, the men of the Renaissance could show that they had already put out to good interest the treasure bequeathed to them by the Greeks. They had produced the astronomical system of Copernicus, with Kepler's great additions; the astronomical discoveries and the physical investigations of Galileo; the mechanics of Stevinus and the 'De Magnete' of Gilbert; the anatomy of the great French and Italian schools and the physiology of Harvey. In Italy, which had succeeded Greece in the hegemony of the scientific world, the Accademia dei Lyncei and sundry other such associations for the investigation of nature, the models of all subsequent academies and scientific societies, had been founded; while the literary skill and biting wit of Galileo had made the great scientific questions of the day not only intelligible, but attractive to the general public.
  • Sixty years after Bacon's death Newton had crowned the long labors of the astronomers and the physicists, by coordinating the phenomena of molar motion throughout the visible universe into one vast system, but the 'Principia' helped no man to either wealth or comfort. Descartes, Newton, and Leibnitz had opened up new worlds to the mathematician, but the acquisitions of their genius enriched only man's ideal estate. Descartes had laid the foundations of rational cosmogony and of physiological psychology; Boyle had produced models of experimentation in various branches of physics and chemistry; Pascal and Torricelli had weighed the air; Malpighi and Grew, Ray and Willoughby had done work of no less importance in the biological sciences; but weaving and spinning were carried on with the old appliances; nobody could travel faster by sea or by land than at any previous time in the world's history, and King George could send a message from London to York no faster than King John might have done. Metals were worked from their ores by immemorial rule of thumb, and the centre of the iron trade of these islands was still among the oak forests of Sussex. The utmost skill of our mechanicians did not get beyond the production of a coarse watch.
  • Science... has ended by utterly repudiating the personal point of view. She catalogues her elements and records her laws indifferent as to what purpose may be shown forth by them, and constructs her theories quite careless of their bearing on human anxieties and fates. Though the scientist may individually nourish a religion, and be a theist in his irresponsible hours, the days are over when it could be said that for Science herself the heavens declare the glory of God and the firmament showeth his handiwork. Our solar system, with its harmonies, is seen now as but one passing case of a certain sort of moving equilibrium in the heavens, realized by a local accident in an appalling wilderness of worlds where no life can exist. In a span of time which as a cosmic interval will count but as an hour, it will have ceased to be. The Darwinian notion of chance production, and subsequent destruction, speedy or deferred, applies to the largest as well as to the smallest facts. It is impossible, in the present temper of the scientific imagination, to find in the driftings of the cosmic atoms, whether they work on the universal or on the particular scale, anything but a kind of aimless weather, doing and undoing, achieving no proper history, and leaving no result. Nature has no one distinguishable ultimate tendency with which it is possible to feel a sympathy. In the vast rhythm of her processes... she appears to cancel herself. The books of natural theology which satisfied the intellects of our grandfathers seem to us quite grotesque, representing, as they did, a God who conformed the largest things of nature to the paltriest of our private wants. The God whom science recognizes must be a God of universal laws exclusively, a God who does a wholesale, not a retail business. He cannot accommodate his processes to the convenience of individuals. The bubbles on the foam which coats a stormy sea are floating episodes, made and unmade by the forces of the wind and water. Our private selves are like those bubbles—epiphenomena, as Clifford, I believe, ingeniously called them; their destinies weigh nothing and determine nothing in the world's irremediable currents of events.
    • William James, The Varieties of Religious Experience Lecture XX, "Conclusions" (1902)
  • I shall try to sum up the main obstacles which arrested the progress of science for such an immeasurable time. The first was the splitting of the world into two spheres, and the mental split which resulted from it. The second was the geocentric dogma, the blind eye turned on the promising line of thought which had started with the Pythagoreans and stopped abruptly with Aristarchus of Samos. The third was the dogma of uniform motion in perfect circles. The fourth was the divorcement of science from mathematics. The fifth was the inability to realize that a body at rest tended to stay at rest, a body in motion tended to stay in motion. The main achievement of the first part of the scientific revolution was the removal of these five cardinal obstacles. This was done chiefly by three men: Copernicus, Kepler and Galileo. After that, the road was open to the Newtonian synthesis; from there on the journey led with rapidly gaining speed to the atomic age.
  • The uomo universale of the Renaissance, who was artist and craftsman, philosopher and inventor, humanist and scientist, astronomer and monk, all in one, split up into his component parts. Art lost its mythical, science its mystical inspiration; man became again deaf to the harmony of the spheres. The Philosophy of Nature became ethically neutral, and "blind" became the favourite adjective for the working of natural law. The space-spirit hierarchy was replaced by the space-time continuum. ...man's destiny was no longer determined from "above" by a super-human wisdom and will, but from "below" by the sub-human agencies of glands, genes, atoms, or waves of probability. ...they could determine his fate, but could provide him with no moral guidance, no values and meaning. A puppet of the Gods is a tragic figure, a puppet suspended on his chromosomes is merely grotesque.
    • Arthur Koestler, The Sleepwalkers: A History of Man's Changing Vision of the Universe Epilogue (1959, 1963)
  • What the founders of modern science ... had to do, was not criticize and to combat certain faulty theories, and to correct or to replace them by better ones. They had to do something quite different. They had to destroy one world and replace it by another. They had to reshape the framework of our intellect itself, to restate and to reform its concepts, to evolve a new approach to Being, a new concept of knowledge, and a new concept of science — and even to replace a pretty natural approach, that of common sense, by another which is not natural at all.
    • Alexandre Koyré, "Galileo to Plato" in the Journal of the History of Ideas (1957)
  • The infinite Universe of the New Cosmology, infinite in Duration as well as Extension, in which eternal matter in accordance with eternal and necessary laws moves endlessly and aimlessly in eternal space, inherited all the ontological attributes of Divinity. Yet only those — all the others the departed God took with him... The Divine Artifex had therefore less and less to do in the world. He did not even have to conserve it, as the world, more and more, became able to dispense with this service...
  • There is something for which Newton — or better to say not Newton alone, but modern science in general — can still be made responsible: it is splitting of our world in two. I have been saying that modern science broke down the barriers that separated the heavens and the earth, and that it united and unified the universe. And that is true. But, as I have said, too, it did this by substituting for our world of quality and sense perception, the world in which we live, and love, and die, another world — the world of quantity, or reified geometry, a world in which, though there is place for everything, there is no place for man. Thus the world of science — the real world — became estranged and utterly divorced from the world of life, which science has been unable to explain — not even to explain away by calling it "subjective".
  • He [ Kepler ] supposes, in that treatise [epitome of astronomy], that the motion of the sun on his axis is preserved by some inherent vital principle; that a certain virtue, or immaterial image of the sun, is diffused with his rays into the ambient spaces, and, revolving with the body of the sun on his axis, takes hold of the planets and carries them along with it in the same direction; as a load-stone turned round in the neighborhood of a magnetic needle makes it turn round at the same time. The planet, according to him, by its inertia endeavors to continue in its place, and the action of the sun's image and this inertia are in a perpetual struggle. He adds, that this action of the sun, like to his light, decreases as the distance increases; and therefore moves the same planet with greater celerity when nearer the sun, than at a greater distance. To account for the planet's approaching towards the sun as it descends from the aphelium to the perihelium, and receding from the sun while it ascends to the aphelium again, he supposes that the sun attracts one part of each planet, and repels the opposite part; and that the part which is attracted is turned towards the sun in the descent, and that the other part is towards the sun in the ascent. By suppositions of this kind he endeavored to account for all the other varieties of the celestial motions.
  • In the opinion of one of the most eminent modem naturalists, it was Boyle who opened up those chemical inquiries, which went on accumulating until, a century later, they supplied the means by which Lavoisier and his contemporaries fixed the real basis of chemistry, and enabled it for the first time to take its proper stand among those sciences that deal with the external world.
    • James Henry Monk, The Life of Richard Bentley, D.D.: Master of Trinity College (1833) Vol.1
  • The age-long history of thinking on gravitation, too, was erased from the collective consciousness, and that force somehow became the serendipitous child of Newton's genius. The new attitude is well illustrated by the anecdote of the apple, a legend spread by Voltaire, one of the most active and vehement erasers of the past. … The need to build the myth of an ex nihilo creation of modern science gave rise to much impassioned rhetoric.
    • Lucio Russo, "The Erasure of Ancient Science" in The Forgotten Revolution: How Science Was Born in 300 BC and Why It Had to Be Reborn (2004)
  • Newton proposed that the particles of the air (we would call them molecules), were motionless in space and were held apart by repulsive forces between them... He assumed that the repulsive force was inversely proportional to the distance between the particles...He showed that, on the basis of this assumption, a collection of static particles in a box would behave exactly as Boyle had found. His model led directly to Boyle's law. Probably the greatest scientist ever, Newton managed to get the right answer from a model that was wrong in every possible way.
    • Brian L. Silver, The Ascent of Science (1998)
  • The Hon. Robert Boyle... in the third volume of the folio edition of his work, is a paper having the following title, "That the Goods of Mankind may be much Increased by the Naturalist's Insight into Trades." This paper contains... the first attempt at a philosophical recognition of the value and importance of the industrial arts of mankind. In it we recognise the early effort of a man of science seeking to call the attention of the learned and great of his time to what he aptly denominates the Natural History of Trades. ...He contends that the benefit accruing from such an inquiry would be mutual, both to the learned in natural knowledge, and to the skilled in industrial art.
  • Newton did not show the cause of the apple falling, but he shewed a similitude between the apple and the stars. By doing so he turned old facts into new knowledge; and was well content if he could bring diverse phenomenon under "two or three Principles of Motion" even "though the Causes of these Principles were not yet discovered."
  • Gilbert, in his work, De Magnete printed in 1600 has only some vague notions that the magnetic virtue of the earth in some way determines the direction of the earth's axis, the rate of its diurnal rotation, and that of the revolution of the moon about it. Gilbert died in 1603, and in his posthumous work (De Mundo nostro Sublunari Philosophia nova, 1631) we have already a more distinct statement of the attraction of one body by another. "The force which emanates from the moon reaches to the earth, and, in like manner, the magnetic virtue of the earth pervades the region of the moon: both correspond and conspire by the joint action of both, according to a proportion and conformity of motions, but the earth has more effect in consequence of its superior mass; the earth attracts and repels, the moon, and the moon within certain limits, the earth; not so as to make the bodies come together, as magnetic bodies do, but so that they may go on in a continuous course." Though this phraseology is capable of representing a good deal of the truth, it does not appear to have been connected... with any very definite notions of mechanical action in detail.

See also[edit]

History of science

External links[edit]

Wikipedia
Wikipedia has an article about: