Max Tegmark

From Wikiquote
Jump to navigation Jump to search
Max Tegmark, 2006

Max Tegmark (born 5 May 1967) is a Swedish-American cosmologist and Associate Professor at the Massachusetts Institute of Technology, where he belongs to the scientific directorate of the Foundational Questions Institute.

Quotes[edit]

  • I believe that consciousness is the way information feels when being processed.
    • On Math, Matter and Mind Piet Hut (IAS), Mark Alford (WashU), Max Tegmark (MIT), Foundations of Physics 36 (2006) 765-794
  • So with each advance in understanding come new questions. So we need to be very humble. We shouldn't have hubris and think that we can understand everything. But history tells us that there is good reason to believe that we will continue making fantastic progress in the years ahead.
    • Interview with the Co-Founders of the Foundational Questions Institute, Dr.Max Tegmark and Dr. Anthony Aguirre.
  • If I get a parking ticket, there is always a parallel universe where I didn't. On the other hand, there is yet another universe where my car was stolen.
    • BBC Horizons - What is Reality? (January 17, 2011)
  • ... I would rather have questions that I can't answer than answers that I can't question. (variation of a remark by Richard Feynman)
  • Yet the complexity of all this pales in comparison to the patterns of information processing in your brain. Your roughly 100 billion neurons are constantly generating electrical signals (“firing”), which involves shuffling around billions of trillions of atoms, notably sodium, potassium, and calcium ions. The trajectories of these atoms form an extremely elaborate braid through spacetime, whose complex intertwining corresponds to storing and processing information in a way that somehow gives rise to our familiar sensation of self-awareness. There’s broad consensus in the scientific community that we still don’t understand how this works, so it’s fair to say that we humans don’t yet fully understand what we are. However, in broad brush, we might say this: You’re a pattern in spacetime. A mathematical pattern. Specifically, you’re a braid in spacetime—indeed, one of the most elaborate braids known.
  • Imagine all the food you have eaten in your life and consider that you are simply some of that food, rearranged.

Our Mathematical Universe: My Quest for the Ultimate Nature of Reality (2014)[edit]

  • But I’ve suddenly changed my mind and turned more optimistic about our cosmic significance. Why? Because I’ve come to believe that advanced evolved life is very rare, yet has huge future potential, making our place in space and time remarkably significant.
  • If there’s a singularity, would the resulting AI, or AIs, feel conscious and self-aware? Would they have an internal reality? If not, they’re for all practical purposes zombies. Of all traits that our human form of life has, I feel that consciousness is by far the most remarkable. As far as I’m concerned, it’s how our Universe gets meaning, so if our Universe gets taken over by life that lacks this trait, then it’s meaningless and just a huge waste of space.
  • We humans replace the bulk of both our “hardware” (e.g., our cells) and our “software” (e.g., our memories) many times in our life span. Nonetheless, we perceive ourselves as stable and permanent. Likewise, we perceive objects other than ourselves as permanent. Or rather, what we perceive as objects are those aspects of the world that display a certain permanence. For instance, when observing the ocean, we perceive the moving waves as objects because they display a certain permanence, even though the water itself is only bobbing up and down. Similarly (…) we perceive only those aspects of the world that are fairly stable against quantum decoherence.
  • My guess is that we’ll one day understand consciousness as yet another phase of matter. I’d expect there to be many types of consciousness just as there are many types of liquids, but in both cases, they share certain characteristic traits that we can aim to understand.
  • (…) no spectator is needed, because your consciousness basically is your reality model. I think that consciousness is the way information feels when being processed in certain complex ways. Since the different parts of your brain interact with each other, different parts of your reality model can interact with each other, so the model of you can interact with your model of the outside world, giving rise to the subjective sensation of the former perceiving the latter.
  • This implication of the Mathematical Universe Hypothesis is pretty radical, so please pause your reading for a moment to take it in and think about it. What you’re aware of right at this moment feels not like a photo but like a movie clip. This movie isn’t reality—it exists only in your head, as part of your brain’s reality model. It contains lots of information about the actual external physical reality—as long as you aren’t dreaming or hallucinating—but still constitutes only a very heavily edited version of reality, akin to the evening news on TV, mainly featuring certain highlights of patterns nearby in space and time that your brain thinks are useful for you to be aware of.
  • (…) time is not an illusion, but the flow of time is. So is change. In spacetime, the future exists and the past doesn’t disappear.
  • A famous thorny issue in philosophy is the so-called infinite regress problem. For example, if we say that the properties of a diamond can be explained by the properties and arrangements of its carbon atoms, that the properties of a carbon atom can be explained by the properties and arrangements of its protons, neutrons and electrons, that the properties of a proton can be explained by the properties and arrangements of its quarks, and so on, then it seems that we’re doomed to go on forever trying to explain the properties of the constituent parts. The Mathematical Universe Hypothesis offers a radical solution to this problem: at the bottom level, reality is a mathematical structure, so its parts have no intrinsic properties at all!
  • (…) the bottom line is that if you believe in an external reality independent of humans, then you must also believe that our physical reality is a mathematical structure. Nothing else has a baggage-free description. In other words, we all live in a gigantic mathematical object—one that’s more elaborate than a dodecahedron, and probably also more complex than objects with intimidating names such as Calabi-Yau manifolds, tensor bundles and Hilbert spaces, which appear in today’s most advanced physics theories. Everything in our world is purely mathematical—including you.
  • It’s absolutely crucial that we don’t conflate this internal reality with the external reality that it’s tracking, because the two are very different. My brain’s internal reality is like the dashboard of my car: a convenient summary of the most useful information.' Just as my car’s dashboard tells me my speed, fuel level, motor temperature, and other things useful for a driver to be aware of, my brain’s dashboard/reality model tells me my speed and position, my hunger level, the air temperature, highlights of my surroundings and other things useful for the operator of a human body to be aware of.
  • Third, this allowed us to propose what we called the cosmological interpretation of quantum mechanics. Here we interpret the wavefunction for an object as describing not some funky imaginary ensemble of possibilities for what the object might be doing, but rather the actual spatial collection of identical copies of the object that exist in our infinite space. Moreover, quantum uncertainty that you experience simply reflects your inability to self-locate in the Level I multiverse, i.e., to know which of your infinitely many copies throughout space is the one having your subjective perceptions.
  • What is real? Is there more to reality than meets the eye? Yes! was Plato’s answer over two millennia ago. In his famous cave analogy, he likened us to people who’d lived their entire lives shackled in a cave, facing a blank wall, watching the shadows cast by things passing behind them, and eventually coming to mistakenly believe that these shadows were the full reality. Plato argued that what we humans call our everyday reality is similarly just a limited and distorted representation of the true reality, and that we must free ourselves from our mental shackles to begin comprehending it.
  • Evolution endowed us with intuition only for those aspects of physics that had survival value for our distant ancestors, such as the parabolic orbits of flying rocks (explaining our penchant for baseball). A cavewoman thinking too hard about what matter is ultimately made of might fail to notice the tiger sneaking up behind and get cleaned right out of the gene pool. Darwin’s theory thus makes the testable prediction that whenever we use technology to glimpse reality beyond the human scale, our evolved intuition should break down. We’ve repeatedly tested this prediction, and the results overwhelmingly support Darwin. At high speeds, Einstein realized that time slows down, and curmudgeons on the Swedish Nobel committee found this so weird that they refused to give him the Nobel Prize for his relativity theory. At low temperatures, liquid helium can flow upward. At high temperatures, colliding particles change identity; to me, an electron colliding with a positron and turning into a Z-boson feels about as intuitive as two colliding cars turning into a cruise ship. On microscopic scales, particles schizophrenically appear in two places at once, leading to the quantum conundrums mentioned above. On astronomically large scales… weirdness strikes again: if you intuitively understand all aspects of black holes [then you] should immediately put down this book and publish your findings before someone scoops you on the Nobel Prize for quantum gravity… [also,] the leading theory for what happened [in the early universe] suggests that space isn’t merely really really big, but actually infinite, containing infinitely many exact copies of you, and even more near-copies living out every possible variant of your life in two different types of parallel universes.

Life 3.0: Being Human in the Age of Artificial Intelligence (2017)[edit]

  • Let’s instead define life very broadly, simply as a process that can retain its complexity and replicate. What’s replicated isn’t matter (made of atoms) but information (made of bits) specifying how the atoms are arranged. When a bacterium makes a copy of its DNA, no new atoms are created, but a new set of atoms are arranged in the same pattern as the original, thereby copying the information. In other words, we can think of life as a self-replicating information-processing system whose information (software) determines both its behavior and the blueprints for its hardware.
  • How is technology changing the hierarchical nature of our world? History reveals an overall trend toward ever more coordination over ever-larger distances, which is easy to understand: new transportation technology makes coordination more valuable (by enabling mutual benefit from moving materials and life forms over larger distances) and new communication technology makes coordination easier. When cells learned to signal to neighbors, small multicellular organisms became possible, adding a new hierarchical level. When evolution invented circulatory systems and nervous systems for transportation and communication, large animals became possible. Further improving communication by inventing language allowed humans to coordinate well enough to form further hierarchical levels such as villages, and additional breakthroughs in communication, transportation and other technology enabled the empires of antiquity. Globalization is merely the latest example of this multi-billion-year trend of hierarchical growth.

External links[edit]

Wikipedia
Wikipedia has an article about: