Jump to content

Vladimir Voevodsky

From Wikiquote
Vladimir Voevodsky in 2011

Vladimir Alexandrovich Voevodsky (4 June 1966 – 30 September 2017) was a Russian-American mathematician. His work in developing a homotopy theory for algebraic varieties and formulating motivic cohomology led to the award of a Fields Medal in 2002. He is also known for the proof of the Milnor conjecture and motivic Bloch–Kato conjectures and for the univalent foundations of mathematics and homotopy type theory.


Quotes

[edit]
  • Mathematical research currently relies on a complex system of mutual trust based on reputations. By the time Simpson's paper appeared, both Kapranov and I had strong reputations. Simpson's paper created doubts in our result, which led to it being unused by other researchers, but no one came forward and challenged us on it.
  • Today we face a problem that involves two difficult to satisfy conditions. On the one hand we have to find a way for computer assisted verification of mathematical proofs. This is necessary, first of all, because we have to stop the dissolution of the concept of proof in mathematics. On the other hand, we have to preserve the intimate connection between mathematics and the world of human intuition. This connection is what moves mathematics forward and what we often experience as the beauty of mathematics.

Quotes about Vladimir Voevodsky

[edit]
  • Infinity-groupoids encode all the paths in a space, including paths of paths, and paths of paths of paths. They crop up in other frontiers of mathematical research as ways of encoding similar higher-order relationships, but they are unwieldy objects from the point of view of set theory. Because of this, they were thought to be useless for Voevodsky’s goal of formalizing mathematics. Yet Voevodsky was able to create an interpretation of type theory in the language of infinity-groupoids, an advance that allows mathematicians to reason efficiently about infinity-groupoids without ever having to think of them in terms of sets. This advance ultimately led to the development of univalent foundations.
[edit]
Wikipedia
Wikipedia
Wikipedia has an article about: