From Wikiquote
Jump to navigation Jump to search

Overpopulation is the condition of any organism's numbers exceeding the carrying capacity of its ecological niche.

Arranged alphabetically by author or source:
A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z · See also · External links



  • We’ve just welcomed the 8 billionth member of the human race on this planet. That’s a wonderful birth of a baby, of course. But we need to understand that the more people there are, the more we put the Earth under heavy pressure. As far as biodiversity is concerned, we are at war with nature. We need to make peace with nature. Because nature is what sustains everything on Earth … the science is unequivocal.
  • Babies are the enemies of the human race... Let's consider it this way: by the time the world doubles its population, the amount of energy we will be using will be increased sevenfold which means probably the amount of pollution that we are producing will also be increased sevenfold. If we are now threatened by pollution at the present rate, how will we be threatened with sevenfold pollution by, say, 2010 A.D., distributed among twice the population? We'll be having to grow twice the food out of soil that is being poisoned at seven times the rate.
    • Isaac Asimov (1969) in an interview with Boston magazine. Partly cited in Ellen Peck (1976). The baby trap, p. 17
  • It's going to destroy it all. I use what I call my bathroom metaphor. If two people live in an apartment, and there are two bathrooms, then both have what I call freedom of the bathroom, go to the bathroom any time you want, and stay as long as you want to for whatever you need. And this to my way is ideal. And everyone believes in the freedom of the bathroom. It should be right there in the Constitution. But if you have 20 people in the apartment and two bathrooms, no matter how much every person believes in freedom of the bathroom, there is no such thing. You have to set up, you have to set up times for each person, you have to bang at the door, aren't you through yet, and so on. And in the same way, democracy cannot survive overpopulation. Human dignity cannot survive it. Convenience and decency cannot survive it. As you put more and more people onto the world, the value of life not only declines, but it disappears. It doesn't matter if someone dies.
  • We are a plague on the Earth. It’s coming home to roost over the next 50 years or so. It’s not just climate change; it’s sheer space, places to grow food for this enormous horde. Either we limit our population growth, or the natural world will do it for us, and the natural world is doing it for us right now.


  • The success of modern medicine is today so great, that millions of people are kept alive - if not cured - who in earlier days, and with less scientific aptitude, would normally have died. In this developed skill and knowledge, and in this aptitude in the care of the physical mechanism, is today to be found a major world problem - the problem of overpopulation of the planet, leading to the herd life of humanity and the consequent economic problem - to mention only one of the incidental difficulties of this success. This "unnatural" preservation of life is the cause of much suffering, and is a fruitful source of war, being contrary to the karmic intent of the planetary Logos.
    With this vast problem, I cannot here deal. I can only indicate it. It will be solved when the fear of death disappears, and when humanity learns the significance of time and the meaning of the cycles.
  • As we slide seamlessly from 7 billion to 8 billion humans, each generation more powerful, polluting, and destructive than the previous, I have to wonder whether one century is too much time to allow a “natural” progression into negative population growth, or whether the biodiversity damage a century like this one will inflict could be incalculable and irreversible, if not terminal for us. Think about the honey bees and hummingbirds. Think about the sudden absence of insects we are seeing all over the world, and how that soon may affect populations farther up or down the food chain. Now, Mr. Biotech Billionaire, are you serious about populating the world with thousands or millions of bicentiniarians [sic] and tricentinarians [sic]?
  • Whereas the unconscious operations and blind forces of the planet have provoked turbulent changes over the last 4.5 billion years of earth’s evolutionary history, now change is being directed by a conscious and volitional agent – "humanity." We cannot speak of humanity equally, to be sure, as the problem was caused by the industrialized capitalist West and the poorer nations who contributed least to climate crisis will be hit the hardest. But nations such as China, India, and Brazil are major contributors, and the cumulative impact of 7.5 billion people on the planet is causing extinction and collapse everywhere. The stability of the Holocene is now gone, changes are accelerating beyond our understanding and control, and chaos waits at our door.
  • The geometric growth rate of humans is unprecedented and never in the history of the earth has a single species grown to such bloated proportions, completely out of balance with living systems. The problem is only worsening. On conservative estimates, the human population is expected to swell upwards to 8–10 billion by 2050, and perhaps expand significantly by 2100. Human population growth represents a crisis of the highest order, but of course, it is only one aspect of multiple crises -- including species extinction and climate change -- merging together in a perfect storm of catastrophe that forms the daunting challenges facing humanity in the Anthropocene.
  • Currently, the operation of our present industrial civilization is almost wholly dependent on access to huge amounts of fossil fuels. It is important to understand that fossil fuels, especially oil, are not simply used to manufacture and propel passenger automobiles or trucks. They also facilitate the mass assembly of tractors, plows, irrigation pipes, and pumps and then turn around and power them also. They constitute the chemical base of many crucial fertilizers and pesticides. They are also the building blocks of agricultural plastics. They refrigerate perishables. In short, the modern industrial agriculture system could not function without copious amounts of fossil fuel. In the absence of fossil fuel-based industrial agriculture, world food production would plummet to a scale completely inadequate to sustain our current population size, let alone the net addition of over 80 million more people each year. The other side of the coin is that when humans co-opt the extraordinary power found in fossil fuels, we become “overpowered” – and that is how we are over-powering the Earth’s biosphere. We cannot destroy rainforests at the rate of several football fields per minute, trawl the deep oceans, attempt mass-scale aqua-culture, fragment habitat with asphalt roads, or construct miles and miles of urban sprawl without the power of fossil fuels. In summary, fossil fuels underwritten both our population size and growth and our discretionary (over)consumption.
  • In my opinion, you have out-of-control population growth, and you have fewer and fewer [resources]—we are heading for the biggest train wreck our civilization has ever come across ever. Ever. And I think that within 40 or 50 years, we’ll be there. If your population curve is on an exponential growth, and the resources are on an exponential decline, what happens first is you get increases in wealth discrepancy, which means that you get rich pockets of gated communities with security guards outside them, and you get more and more poverty outside that area. And the resources go down, and people start having resource wars over water and food and agriculture and arable land, and then you have Joburg in 2050. And you can see signs of it everywhere. It’s just overpopulation and lack of resources. We just aren’t in control of our destiny.
  • ... Reverend THOMAS MALTHUS' prediction made in 1798—that man would reproduce himself into a condition of "misery and vice" because of the growing imbalance caused by the multiplication of his own numbers by geometric progression, while his food supply was increasing arithmetically—is as valid today as when it was made. He was a visionary and saw clearly the monster of overpopulation. The only error in his prediction was one of a "few seconds on the clock of human occupancy of the earth". We, agriculturists, can buy at most a few decades of time in which to bring population growth into successful balance with food production.


  • During the past hundred years, Homo sapiens' population increased from 2 billion to nearly 8 billion and the United Nations (2019) projects an increase of 3 billion more by 2100, unless steps are taken to reduce this population growth. Ignoring this projected increase means ignoring a major driver of the unfolding biodiversity crisis; accepting current bloated human numbers as an appropriate status quo means accepting a biologically impoverished planet.
    • Ibid.
  • Thomas Malthus, an eighteenth-century economist, once predicted that because our population size increases exponentially while our food supply increases arithmetically, our population will one day exceed our ability to sustain it. While this has now been disproven with the creation of processed foods and genetically modified organisms, Farb’s paradox may hold true. Because Earth’s population is growing, we increase our food production. Then, because we have a surplus of food, people are more well-nourished, leading to higher life expectancies and lower infant mortality rates, and people are able to have more children. This cyclical paradox is not healthy for our planet because while we may be able to sustain our growing population’s appetites, our other important resources, such as water and oil, are dwindling. To have a sustainable population size, we should be reproducing at a replacement rate, much like Denmark and Japan are.
  • Today [hu]mankind is locked into stealing ravenously from the future. Famine in the modern world must be… one of several symptoms reflecting a deeper malady of in the human condition—namely, diachronic competition, a relationship whereby contemporary well-being is achieved at the expense of our descendants. By our sheer numbers, by the state of our technological development, and by being oblivious to differences between a method that achieved lasting increments of human carrying capacity [agriculture] and one that achieves only temporary supplements [reliance on fossil fuels and other mined substances], we have made satisfaction of today's human aspirations dependent upon massive deprivation for posterity.
  • Scarcely more than two generations had tasted the fruits of industrialization when the growth of population was still further accelerated by truly effective death control. The role of microorganisms in producing diseases was discovered. In 1865 the practice of antiseptic surgery began. It serves... as a reasonable demarcation of the beginning of an era filled with related breakthroughs in medical technology: hygienic practices, vaccination, antibiotics, etc. The total effect of this recent series of achievements has been to emancipate mankind more... from the life-curtailing effects of the invisible creatures for which human tissues used to serve as sustenance. Like other prey species newly protected from their predators, we have been fruitful and have so multiplied that we have much more than "replenished" the earth with our kind.
    • Ibid., p. 30.
  • People displayed either persistent ignorance of the carrying capacity concept or naive faith that carrying capacity could always be expanded, [and] that limits could always be transcended. Such an assump­tion seemed to underlie the stubborn refusal of capitalists and Marx­ists alike to acknowledge that the myth of limitlessness had, at last, become obsolete. There was also the assumption that further ad­vances in technology would necessarily enlarge carrying capacity, not reduce it. Enlargement of carrying capacity had been the role of tech­nology in the past; however… there has been a reversal of this role in the industrial era. Technology has en­larged human appetites for natural resources, thus diminishing the number of us that a given environment can support.
    • Ibid., p. 32.
  • [Hu]man[s]... have imagined... [themselves] to be more unlike other mammals than [t]he[y] really... [are], so when human behavior has shown these same characteristics, various other explanations have been put forth which have obscured the significance of population pressure itself. In the twentieth century, with human numbers enlarged and resource draw­down becoming significant, [hu]man[kind] went to war. [T]he[y] rioted in the streets. [T]he[y] committed more... crimes of violence. [...] [Their] political atti­tudes polarized and [t]he[y] created totalitarian governments, some of which gave license to sadistic tendencies. A generation gap widened and deepened. In spite of earnest efforts by humane activists to inhibit racism and to rectify economic inequality, disparities between people remained and animosities became more virulent. Standards of de­cency in behavior toward others and expectations of considerate self-­restraint were eroded and degraded in many places.
    • Ibid., p. 107.
  • We need to realize the "load" with which we humans burden the planet's ecosystems consists of more than just a population number. People living by different cultures not only reproduce at different rates; they impose very different per capita ecological impacts. Culture includes a population's technology and people's ways of organizing themselves. Each of us living in a "developed" country (i.e., industrialized far beyond anything conceivable to Malthus) has an enormously greater resource appetite and environmental impact than does each resident of a so-called "developing" country. For our grossly unsustainable manner of living, 6 billion is far too many.
    • William R. Catton, Worse than Foreseen by Malthus (even if the living do not outnumber the dead). Washington State University (March 2000)
  • Life has now entered a sixth mass extinction. This is probably the most serious environmental problem, because the loss of a species is permanent, each of them playing a greater or lesser role in the living systems on which we all depend. The species extinctions that define the current crisis are, in turn, based on the massive disappearance of their component populations, mostly since the 1800s. The massive losses that we are experiencing are being caused, directly or indirectly, by the activities of Homo sapiens. They have almost all occurred since our ancestors developed agriculture, some 11,000 y ago. At that time, we numbered about 1 million people worldwide; now there are 7.7 billion of us, and our numbers are still rapidly growing. As our numbers have grown, humanity has come to pose an unprecedented threat to the vast majority of its living companions.
  • Over the last century the pace of many human activities has so accelerated, and human overpopulation grown so severe, to have created a dramatic global environmental transformation. Most natural ecosystem have been highly modified or have disappeared altogether, and the abundance of wildlife has been greatly reduced.
    • Ibid.
  • The world, our world, finds itself caught between a rock and hard place. The relationship that we humans have developed with fossil energy over the last 250 years is a textbook definition of an addiction, and increasingly looks like a Faustian pact: we know that it’s slowly killing us, we know we should be leaving it in the ground and we also know that we will someday have to live without it anyway, yet we just can’t stop burning it and we can’t get enough of it, because we have multiplied our numbers and built our whole world around it. The detox “replacement medications” that we are using do not seem to be working so far, even as we keep increasing their doses. We are of course “pledging” to try harder and harder in the future, yet we keep relapsing into our fossil addiction, year after year, day after day, one flight at a time, one car ride at a time, one purchase at a time, one degree of comfort or of convenience at a time. By doing so we keep turning our eyes and minds away from the real nature of the upcoming and inevitable “energy transition”, the only one that is in fact likely to happen in our lifetimes, and which as Richard Heinberg said will almost certainly be a transition “from using a lot to using a lot less”.
  • The powers given to us by fossil fuels have put us on the path to ecological suicide due to climate change; soil depletion; fisheries depletion; deforestation; toxic pollution of the air, water, and land; and ironically, depletion of fossil fuels which have enabled humans temporarily to overshoot by a wide margin the long-term carrying capacity of the Earth.
  • Man will come to realize that the overpopulation of the world is a grave danger to the continuation of the species. Today, one of the major reasons - and this is the extraordinary paradox - for the huge population in the world is the over-population of the poorer areas of the world, the Third World, those nations least able to afford to feed their peoples... they are dependent on having large families because they know that two-thirds or more will die before they can grow up, and the traditional peasant outlook on families as people to look after them in their old age. That is their insurance, their pension for the future... They have large families in many areas of the world simply to ensure that one, two, or maybe three will live into adulthood.
    • Benjamin Creme in The Reappearance of the Christ and the Masters of Wisdom (1980)
  • When... we share the produce of the world, you will see that the masses of poor people who are producing most of the forms for the incarnating egos will take the steps needed to prevent this, and gradually the population will subside to a level which the planet can easily bear.
    • Ibid.


  • The population boom of the last few centuries […] was made possible by massive advances in living standards, economic growth, surpluses of food, and vastly improved public health. All of this, however, was sustained by fossil fuels. Once fossil-fuel reserves peak […] production, growth, and the amenities of modern life will gradually halt. Contemporary industrial society will downgrade into a “scarcity society” that manages on minimal energy, after which it will become a “salvage society” that scrapes survival from the refuse of the defunct urban buildings, information networks, and industrial centers.
    • Rick Docksai, "Is Civilization Doomed?" The Futurist. March/April 2010.


  • The key to understanding overpopulation is not population density but the numbers of people in an area relative to its resources and the capacity of the environment to sustain human activities; that is, to the area’s carrying capacity. When is an area overpopulated? When its population can’t be maintained without rapidly depleting nonrenewable resources... By this standard, the entire planet and virtually every nation is already vastly overpopulated.
    • Paul R. Ehrlich, The Population Explosion (1990)
  • The debate regarding which individual factor, among the three key factors producing the environmental crisis, causes more damage - the size of the human population on the planet, excessive consumption of resources, or unequal/ unjust distribution of resources among countries [the wealthier countries consume much more resources, per person on average than poorer countries] - is like a debate about which contributes more to a triangle, the base or the ribs of the triangle. You can not separate the three factors. If we analyze the numbers over a relatively longer time interval, we will conclude that the size of the population has a bigger impact than consumption. On the other hand, consumption and unequal distribution are also important aspects. If we do not change these three factors all at the same time, the quality of our life will change dramatically. Today humanity is delivering a serious blow to [the rest of] nature, but it is clear that nature will deliver the final blow.
  • Earth is home to millions of species. Just one dominates it. Us. Our cleverness, our inventiveness, and our activities have modified almost every part of our planet. In fact, we are having a profound impact on it. Indeed, our cleverness, our inventiveness, and our activities are now the drivers of every global problem we face. And every one of these problems is accelerating as we continue to grow towards a global population of ten billion. In fact, I believe we can rightly call the situation we're in right now an emergency – an unprecedented planetary emergency.
  • We humans emerged as a species about 200,000 years ago. In geological time, that is really incredibly recent. Just 10,000 years ago, there were one million of us. By 1800, just over 200 years ago, there were 1 billion of us. By 1960, 50 years ago, there were 3 billion of us. There are now over 7 billion of us. By 2050, your children, or your children's children, will be living on a planet with at least 9 billion other people. Some time towards the end of this century, there will be at least 10 billion of us. Possibly more.
    • Ibid.
  • We're spending €8bn at CERN to discover evidence of a particle called the Higgs boson, which may or may not eventually explain mass and provide a partial thumbs-up for the standard model of particle physics. And CERN's physicists are keen to tell us it is the biggest, most important experiment on Earth. It isn't. The biggest and most important experiment on Earth is the one we're all conducting, right now, on Earth itself. Only an idiot would deny that there is a limit to how many people our Earth can support. The question is, is it seven billion (our current population), 10 billion or 28 billion? I think we've already gone past it. Well past it.
    • Ibid.


  • Whether or not such a hypothesis fully accounts for the population increase that accompanies a sedentary life, there can be no doubt that human numbers soared. In the interval from 10,000 to 6000 years ago—a mere 160 human generations—the population of the Near East is estimated to have increased from less than 100,000 people to more than three million. With each increase, additional pressure was placed upon the food producers to domesticate new species and to invent new technologies, such as those based on the plow and on irrigation. Human beings now found themselves on a treadmill from which to this day they have not been able to get off. They are still plagued by the basic paradox of food production: Intensification of production to feed an increased population leads to a still greater increase in population.
  • During the brief time since James Watt's commercial production of the improved Newcomen steam engine in 1775, a revolution unparalleled in human history has occurred at all levels of society and has penetrated all aspects of culture. The technological innovations are, of course, dramatic, but equally important are the biological, political, social, and economic consequences of modernization. From a biological perspective, the most important consequence is the extension of the human life span and the growth in human numbers. In the past two centuries, life expectancy has nearly tripled and the population of our species has multiplied five times over.
    • Ibid. p. 189


  • Overpopulation is the root cause of all other environmental problems... [and] itself is the natural consequence of the Food Race — driven by the constant need to expand. That need is a systemic consequence of complex society. The alternative to overpopulation, then, is to reverse the trend of intensifying complexity and accept greater simplicity: in a word, collapse.
  • If nobody died the planet would soon run out of room for more people. How would this world be run (our political systems are far from perfect now); who would decide what type of house one lived in, what type of food one ate? What would we do for a living?
  • Over the last century, billions have enjoyed better, fuller and more enriched lives than their ancestors could dream of—but when all the bills for that are paid who knows how the ledgers of the two enterprises will stand?
  • My growing environmental awareness only adds more fuel to the argument for having no children. And the logic of never-ending consumption does not just harm the environment, it kills people too.


  • The last 500 years have witnessed a phenomenal and unprecedented growth in human power. In the year 1500, there were about 500 million Homo sapiens in the entire world. Today, there are 7 billion. The total value of goods and services produced by humankind in the year 1500 is estimated at $250 billion, in today’s dollars. Nowadays the value of a year of human production is close to $60 trillion. In 1500, humanity consumed about 13 trillion calories of energy per day. Today, we consume 1,500 trillion calories a day. (Take a second look at those figures — human population has increased fourteenfold, production 240-fold, and energy consumption 115-fold.)
  • Around 1990, we became the most numerous mammalian species on the planet, outnumbering even rats.
  • All measures to thwart the degradation and destruction of our ecosystem will be useless if we do not cut population growth. By 2050, if we continue to reproduce at the current [but declining] rate, the planet will have between 8 billion and 10 billion people, according to a recent U.N. forecast. This is a 50 percent increase. And yet government-commissioned reviews, such as the Stern report in Britain, do not mention the word population. Books and documentaries that deal with the climate crisis, including Al Gore’s An Inconvenient Truth, fail to discuss the danger of population growth. This omission is odd, given that a doubling in population, even if we cut back on the use of fossil fuels, shut down all our coal-burning power plants and build seas of wind turbines, will plunge us into an age of extinction and desolation unseen since the end of the Mesozoic era, 65 million years ago, when the dinosaurs disappeared.
  • We are experiencing an accelerated obliteration of the planet’s life forms — an estimated 8,760 species die off per year — because, simply put, there are too many people. Most of these extinctions are the direct result of the expanding need for energy, housing, food, and other resources. The Yangtze River dolphin, Atlantic gray whale, West African black rhino, Merriam's elk, California grizzly bear, silver trout, blue pike and dusky seaside sparrow are all victims of human overpopulation. Population growth, as E. O. Wilson says, is "the monster on the land." Species are vanishing at a rate of a hundred to a thousand times faster than they did before the arrival of humans. If the current rate of extinction continues, Homo sapiens will be one of the few life forms left on the planet, its members scrambling violently among themselves for water, food, fossil fuels, and perhaps air until they too disappear. Humanity, Wilson says, is leaving the Cenozoic, the age of mammals, and entering the Eremozoic — the era of solitude. As long as the Earth is viewed as the personal property of the human race, a belief embraced by everyone from born-again Christians to Marxists to free-market economists, we are destined to soon inhabit a biological wasteland.
    • Ibid.
  • Our core ecological problem is not climate change. It is overshoot, of which global warming is a symptom. Overshoot is a systemic issue. Over the past century-and-a-half, enormous amounts of cheap energy from fossil fuels enabled the rapid growth of resource extraction, manufacturing, and consumption; and these in turn led to population increase, pollution, and loss of natural habitat and hence biodiversity. The human system expanded dramatically, overshooting Earth’s long-term carrying capacity for humans while upsetting the ecological systems we depend on for our survival. Until we understand and address this systemic imbalance, symptomatic treatment (doing what we can to reverse pollution dilemmas like climate change, trying to save threatened species, and hoping to feed a burgeoning population with genetically modified crops) will constitute an endlessly frustrating round of stopgap measures that are ultimately destined to fail.
  • During the last 200 years, per capita energy usage grew eight-fold, while human population expanded at about the same rate. As a result of energy growth, all the things we do with energy became more doable. Transportation, manufacturing, agriculture, and mining exploded in scale. Energy became so abundant that it seemed we could solve any human problem, now or in the future, just by throwing more energy at it. We even reconfigured our economic system so that it assumes and requires perpetual growth. But growth in fossil-fuel energy can’t continue much longer: depletion and climate change will see to that. And even if we make a wholehearted effort to switch to low-carbon energy sources, we face limits to nature’s supplies of materials with which to make solar panels, wind turbines, nuclear reactors, and batteries.
  • Prior to the widespread use of coal, oil, and natural gas, agrarian societies saw cyclical periods of rise and fall. But the scale of expansion since the dawn of the fossil-fueled industrial revolution, beginning roughly at the start of the 19th century, has been unprecedented. Energy usage per capita has grown 800 percent, as has population. Meanwhile, the contours of society have been transformed: for the first time in human history, most people now live in cities.
  • Of course, we also have to think about the role of population going forward. The more the global population grows, the more difficult this challenge will be. As we approach this question, it's crucial - as always - that we focus on underlying structural drivers. Many women around the world do not have control over their bodies and the number of children they have. Even in liberal nations, women come under heavy social pressure to reproduce, often to the point where those who choose to have fewer or no children are interrogated and stigmatised. Poverty exacerbates these problems... And of course capitalism itself creates pressures for population growth: more people means more labour, cheaper labour, and more consumers. These pressures filter into our culture, and even into national policy: countries like France and Japan are offering incentives to get women to have more children, to keep their economies growing.
    • Jason Hickel, Less is More: How Degrowth Will Save the World, 2021, pp. 110-111
  • Is the proxy war in Ukraine turning out to be only a lead-up to something larger, involving world famine and a foreign-exchange crisis for food- and oil-deficit countries?
    U.S. Cold War strategy is not alone in thinking how to benefit from provoking a famine, oil and balance-of-payments crisis. Klaus Schwab’s World Economic Forum worries that the world is overpopulated – at least with the “wrong kind” of people. As Microsoft philanthropist... Bill Gates has explained: “Population growth in Africa is a challenge.” His lobbying foundation’s 2018 “Goalkeepers” report warned: “According to U.N. data, Africa is expected to account for more than half of the world’s population growth between 2015 and 2050. Its population is projected to double by 2050,” with “more than 40 percent of world’s extremely poor people … in just two countries: Democratic Republic of the Congo and Nigeria.” Gates advocates cutting this projected population increase by 30 percent by improving access to birth control and expanding education to “enable more girls and women to stay in school longer, have children later.” But how can that be afforded with this summer’s looming food and oil squeeze on government budgets?


  • ...The most ambiguous of these [technological] achievements [of the industrial age] is the one that began in mid-nineteenth century with improvements in public health, vaccinations, and antibiotics. These methods of death control emerged too rapidly to be offset by methods of birth control and populations exploded. Again, who can speak against this from within the old paradigm? In fact, it is only from the newer ecological paradigm that we are able to recognize that all this marvelous technology has... likely led the human population to overshoot the carrying capacity of the earth. Even from this perspective many of us would... want to save lives now in hopes that somehow there will be enough resources for those who come after us. In less complex animal populations, an overshoot leads to a crash, or die-off. Can humans somehow circumvent this conclusion without relying on further damaging drawdown strategies? ...a basic change in our technologies, and acceptance of a steady state in economics reinforced by a compatible spiritual orientation, may at least mitigate human suffering and loss.
    • Maynard Kaufman, Adapting to the end of oil, 2008, p. 29.
  • For those of you who have just turned twenty and thus only just earned the right to vote, I will speak simply and plainly. In a word, without fail there comes a time when we must reduce our population in order to maintain the world.
    • Chang-Gyu Kim, Sentinel, (Korean 2010; English translation 2019)
  • Unlike plagues of the dark ages or contemporary diseases we do not yet understand, the modern plague of overpopulation is soluble by means we have discovered and with resources we possess. What is lacking is not sufficient knowledge of the solution but universal consciousness of the gravity of the problem and education of the billions who are its victims.
    • Martin Luther King, Jr., acceptance speech, Margaret Sanger award in human rights 1966; Lamont Hempil Sustainable communities.
  • All we can say now is, that, even now, 600 persons could easily live on a square mile; and that... 1,000 human beings—not idlers—living on 1,000 acres could easily, without... overwork, obtain... a luxurious vegetable and animal food, as well as the flax, wool, silk and hides necessary for their clothing. As to what may be obtained under still more perfect methods—also known but not yet tested on a large scale—is better to abstain from any forecast: so unexpected are the recent achievements of intensive culture. We thus see that the over-population fallacy does not stand the very first attempt at submitting it to a closer examination.
  • [Thomas] Malthus was certainly correct [that demand will outstrip supply], but... [hydrocarbons] ...skewed the [supply-demand] equation over the past [two] hundred years while the human race has enjoyed an unprecedented orgy of [a fraction of] nonrenewable condensed solar energy accumulated over eons of prehistory. The “green revolution” in boosting crop yields was minimally about scientific innovation in crop genetics and mostly about dumping massive amounts of fertilizers and pesticides made... of ...[petroleum] onto crops, as well as employing irrigation at a fantastic scale made possible by abundant oil and gas. The cheap oil age created an artificial bubble of plen[t]itude for a period not much longer than a human lifetime, a hundred years. Within that comfortable bubble, the idea took hold that only grouches, spoilsports, and godless maniacs considered population hypergrowth a problem [with a direct solution], and that to even raise the issue was indecent. ...As oil ceases to be cheap and the world reserves arc toward depletion, we will indeed suddenly be left with an enormous surplus population... that the ecology of the earth will not support. No political program of birth control will avail. The people are already here. The journey back to non-oil population homeostasis will not be pretty. We will discover the hard way that population hypergrowth was simply a side effect of the oil age. It was [more of] a condition [without a remedy], not a problem with a [direct] solution. That is what happened, and we are stuck with it.
  • Cheap oil had allowed populations to explode in precisely those parts of the world that had had, for millennia, a high infant mortality rate and modest life expectancy. Cheap oil was behind the "green revolution" that increased the food supply in the nonindustrial world. Oil was also behind many of the medicines and preventives that had neutralized… diseases. Now, suddenly, most of those children… survived, grew up, and produced more children who survived and grew up, and over… the twentieth century, the global populations hurtled into extreme numerical overshoot. Populations were, in effect, eating oil, notably in [the form of] food exports from the United States, where agribusiness had completely taken over from agriculture. Local farmers in Africa, Asia, or South America couldn’t compete with corporate Archer Daniels Midland’s oil-and-gas-based grain crops and U.S. government subsidies.
    • Ibid., p. 187–188.
  • Peak human population will surely lag... peak oil and peak mineral resources until these conditions express themselves as food shortages. This means that the human population will continue to rise for a while, even as we begin to encounter these... strict resource limits. It’s not possible to estimate how much the population will increase because the relationship between energy and mineral resources and food production is a very fragile equation, subject to any number of discontinuities. To these, add the complications of weather disasters arising from climate change, including drought, the spread of plant diseases, and so forth. This lagging further rise in [the] human population will only make the inevitable contraction more acute once food shortages begin. [Overpopulation] amounts to a human population overshoot… to the planet Earth’s ecology. We're putting a strain on everything the earth has to offer us. While the combination of peak stuff and [too many] billion humans is forcing the issue, ...the truth is that circumstances will now determine what happens, not policies or personalities.
    • James H. Kunstler, Too Much Magic, p. 10.
  • Population overshoot is therefore unlikely to yield to management. Rather, the usual suspects will enter the scene and do their thing: starvation, disease, [...] violence [...] [and] death [...].
    • Ibid.


  • Driven by the Anthropocene engine, human population has grown exponentially, and individual societies have approached collapse multiple times over the past 8,000 years. The disappearance of the Easter Island civilization and the collapse of the Mayan empire, for example, have been linked to the depletion of environmental resources as populations rose. The dramatic decline of the European population during the Black Death in the 1300s was a direct consequence of crowded and unsanitary living conditions that facilitated the spread of Yersenia pestis, or plague.
  • In the 20th century we decisively broke our dependence on energy systems that were fed by the wind and sun and which we supplemented with human and animal muscle power. That leap was made possible by innovations that allowed us to extract, pump, use and transform raw materials, particularly to unlock energy stored in coal and oil, to make chemicals and plastics. That in turn allowed a massive expansion in population, lifespans and economic growth. The rise of industrial capitalism from 1851 to 1971 went hand in hand with a surge in population, mainly in cities, provided with better food and public health.
    • Charles Leadbeater, The Frugal Innovator (2014), p. 36.
  • Our emphasis of science has resulted in alarming rises in world populations that demand an ever-increasing emphasis of science to improve their standards and maintain their vigor.
  • It is still the case that the worst enemies of life are, on the one hand, an excess of life (human life, in particular) and, on the other, the legislation and structure of societies based on market economy. The sturdier a society, the more peaceful it is; the more efficient economic growth (i.e., the ransacking of natural resources), the quicker other forms of life will step aside. Everything that upsets the established order of society, causing chaos and panic, gives time to nature and, ultimately, humans too.
    • Pentti Linkola, Can Life Prevail?: A Revolutionary Approach to the Environmental Crisis. p. 166


  • There is no way we could keep going as we have been. The increase in human population in the 1990s has exceeded the total population in 1600. The population has grown more since 1950 than it did during the previous four million years. The reasons for our recent rapid growth are pretty clear. Although the Industrial Revolution speeded historical growth rates considerably, it was really the public health revolution, and its spread to the Third World at the end of the Second World War, that set us galloping. Vaccines and antibiotics came all at once, and right behind came population. In Sri Lanka in the late 1940s life expectancy was rising at least a year every twelve months. How much difference did this make? Consider the United States: if people died throughout this century at the same rate as they did at its beginning, America's population would be 140 million, not 270 million.
  • The Earth's population is plagued by famines, energy shortages, epidemics, environmental pollution, degeneration, terrorism, dictatorship, anarchism, slavery, excessive increase of waste materials, racial hatred, food shortages, destruction of rain forests, the "greenhouse effect", pollution of lakes, streams and oceans, hatred towards asylum-seekers; radioactive emissions, chemical pollution of water, air, plants, food, human beings and animals. Crime, murder, mass murders, manslaughter; alcoholism, hatred of strangers, oppression, hatred of one's fellowman, extremism, sectarianism, drug addiction, overpopulation, annihilation of animal species, war, violence, torture and capital punishment, general mismanagement, water contamination, eradication of plant species; hatred, vice, jealousy, lovelessness, lack of logic, false humanitarianism, lack of housing, increased traffic, destruction of arable land, unemployment, the collapse of health care, the collapse of care for the elderly, destruction of nature, the collapse of solid waste removal, and the lack of living space, among others. In spite of the many efforts, mankind's problems are not decreasing but, instead, continue to rise steadily in direct proportion to population increases.
  • We end up as an intelligent rapacious social fire ape that believes in gods and denies death.
    • Rob Mielcarski
  • Humans collectively must ultimately face the uncomfortable question of whether Earth’s natural systems can support 8 billion or more people at a modern standard of living. Since the resource footprint of a U.S. citizen is at least four times that of the global average, the key question is whether the planet can support an increase in material throughput four times higher than present when the strain is apparent already. As noble as it may be to wish [for] a modern living standard for an eventual ten billion or more people, it is likely that committing to such a course could result in more human suffering than would transpire under the adoption of more modest goals. The responsible path is to reduce global resource dependencies and abandon the imperative for growth starting now.
  • Even something as seemingly altruistic as health care selfishly focuses on human health, to the exclusion and often direct detriment of ecosystem health. Are we really doing ourselves favors in the long term by making the destructive human enterprise healthier, more populous, longer-living, and therefore better able to carry out its damaging activities? If this sounds abhorrently anti-human, it’s because the human enterprise is currently relentlessly anti-planet. Anything that is anti-planet will dismantle ecosystems that serve as critical life support for humans, spelling failure for the human enterprise. So it’s really the human enterprise that is anti-human by way of being anti-planet. […] The best way to assure long-term prosperity is to forge a non-human-centric partnership with nature that does not always put short-term human interests above those of non-human elements of nature. Even “good” activities like health care therefore miss the boat in terms of building a better tomorrow.
  • Since growth is an absurd short-lived anomaly, what about leveling out in population, resource use per capita, and adopting a steady-state economy? The problem here is that the rate at which we are depleting one-time resources today is unsustainable. We’re simply spending our bank account without paying attention to the balance and without any source of additional income. Most clearly, forests and wild spaces are down by a factor of two in the last 60 years and will be gone within 60 years at current rates of depletion. Before even getting to steady-state conditions, inevitable near-term increases in population together with sought-after increases in standards of living around the world spell an even shorter lifetime for critical habitats. Meanwhile, fisheries are failing in domino fashion; aquifers are being depleted at rates alarmingly higher than replacement; soils are degrading and arable land is lost; fertilizer depends on a finite resource; habitat loss is resulting in species extinctions far in excess of natural rates. Even the plunder of mineral resources in the seemingly infinite crust is getting harder, only a fleeting century or so into our spree. Sustaining present levels for even a few more centuries is a dubious (i.e., unsubstantiated) proposition. It is practically absurd to imagine sustaining present practices for 10,000 years. Humans simply have not yet demonstrated an ability to maintain a technological society without utter reliance on grossly unsustainable inheritance spending.
  • Earth has never in its history had to contend with 8 billion fire apes, intelligent enough to have leveraged power by exploiting and burning one-time resources. We now operate outside the bounds and protections of evolution: in breach of contract, without a map to success. What could possibly convince us that this fireworks show—which has not even come close to standing the test of time—can maintain anything like its current resource impact for the long haul? Humans have demonstrated convincingly that we can live in a primitive state for hundreds of thousands of years. Our present mode is a few-century flash, supported almost entirely by inheritance-spending. Arguing that we have found a new normal is a precarious position that I would not be eager to defend. Parties end. Fireworks shows end. Why would our flash be any different? It’s not just guesswork: what other outcome could result from rapid resource exploitation on a finite planet?
    • Ibid.
  • We face unprecedented pressures on resources and on our environment, as human population and standard of living both surge on a finite planet. Nature will not allow this trend to continue indefinitely.
  • Human population will not be allowed to grow [indefinitely]. Even small growth rates will step up pressure on natural resources, and Earth can only support so much, long-term. Independent of what the “right” number is, once settled, we will not be able to dial it up without imperiling the hard-won success. Even under steady human population, any increase in resource use per person will also not be compatible. In general, growth leads to a dead end: to failure.
    • Ibid. p. 405
  • As a jarring illustration of our tendency to value the human side over the prerequisite physical/ecological side, imagine that somehow we manage to emerge from the coming centuries having established a truly sustainable existence. All resources are renewed by nature at the rate of extraction for human needs; population is steady and at a level just tolerable to the planet in terms of indefinite support. Diverse ecosystems are left to thrive in their natural states. But imagine that we are still plagued by cancer and other maladies, so that life expectancy is, say, 90 years. Then what if a team of researchers hits on a cure for (most forms of) cancer? Hurray! At last! Unambiguously good, right? Well, not so fast. All other elements held the same, longer life spans translate to a higher population, putting additional resource burdens on the planet that it cannot handle in the long term. In order to adopt and implement the cure for cancer, we would have to either deliberately reduce population or lower the standard of living to accommodate the change. All other considerations of the complex society about economic impacts, equity of distribution, legal and political facets, or interaction with religious belief systems must take a back seat to the most fundamental and important question: is this change physically viable on this finite planet in the long term?
  • People tend to prefer the narrative that we, ourselves, are the superheroes, and that our superpowers are not from the fossil fuel suit, but are cognitive in nature. Yet we have the same neural hardware (if not slightly downsized) as our prehistoric ancestors. The main cognitive revolution happened about 70,000 years ago when humans started to believe in things that do not exist (like spirits or potential future gains) that allowed large-scale coordination and shared identity to outcompete evolution’s more biophysical tricks of sharp teeth/claws, speed, strength, camouflage, poison, or overwhelming numbers. Global spread of homo sapiens and megafauna extinctions quickly followed, and it is at this point that the human experiment began to smolder: something was off. About 10,000 years ago, agriculture started and the first visible flame ignited. About 300–400 years ago, the Enlightenment lit a fuse by developing a scientific approach to understanding the world. It was not long before the fuse found fossil fuels and we now witness the predictable explosion that ensued. The explosion is breathtakingly rapid on any meaningful timeline, only appearing in slow motion to the few generations experiencing the phenomenon and thus seeming “normal.” So we can trace some part of our current planetary dominance to human ingenuity, but perhaps the lion’s share actually is attributable to the energy bonanza—as suggested by the dramatic change in the pace of innovation before and after the fossil transition.
  • This… is truly alarming from an ecological point of view: not only has the human population grown like gangbusters, but the level of affluence per person has soared by an even larger factor.
    • Thomas W. Murphy, "Death by Hockey Sticks". Do the Math, University of California, San Diego. September 13, 2022.
  • The dream of eventually having 10 billion people living at American standards completely ignores the glaring fact that we seem to be circling the drain even at today’s impact level (i.e., overshoot). How could we possibly entertain the factor-of-five increase in resource demand that would accompany a realization of “the dream?” It seems delusional… and likely to turn into a nightmare if pursued.
    • Ibid.
  • Human population is going up… We’re not exactly doing the planet (or ultimately ourselves) any favors presently. Will adding more humans that subscribe to our current cultural model somehow make the situation better? Will improving standards of living (thus increasing resource demand) mysteriously turn things around? It’s hard to see how—not without enacting a whole new model.
    • Ibid.
  • Increasing the standard of living of a growing population makes today’s ecological pressures look adorable.
    • Thomas W. Murphy, "A Climate Love Story". Do the Math, University of California, San Diego. September 20, 2022.
  • It is easy to get caught up in the heady whirlwinds of modernity. We have accomplished amazing feats in these past few centuries, and our extrapolative minds envision a continued acceleration. Given that our life span overlaps only a portion of the tale, it is easy to lose the context that our boom (the Industrial Revolution and what followed) is almost entirely due to fossil fuels. This energy surge in turn powered a surge in material access and economic activity (and human population) in what is perhaps fittingly described as a fireworks show.
    • Ibid.
  • What did we do with our fossil fuel bonanza? We exploded population by revolutionizing agriculture [and health]. Now when fossil fuels inevitably (and soon?) decline, we’re left with an overhang that can no longer be supported. The resulting population decline will suddenly cast Malthus in a new light: oh what a starry-eyed soothe-sayer [sic]! When that day comes, […] realize that it’s no more tragic than the ant colony waning as it must.
  • Our fossil fuel bonanza has left our ecosystem in a perilous state. We have destroyed vast forests and habitat, polluted water and soil, kicked off a rapid climate trend that natural systems may not adapt to quickly enough, and basically overrun the planet.
  • …fossil fuels allowed us to drastically overshoot the natural carrying capacity of the planet, and that bill will come due when the underlying resource inevitably dwindles. Sometimes simple is simply right.
    • Ibid.
  • The human explosion has accelerated across the millennia, most recently reaching a fever pitch owing to the employment of fossil fuels—leveraging stored solar energy about a million times faster than it was created. The ensuing access to minerals and ability to transform landscapes has rapidly and radically altered our world within just a few human generations.
  • In 1800, every human on the planet had a corresponding 80 kg of mammal mass in the wild. Wild land mammals outweighed humans in an 80:50 ratio. Today, each human on the planet can only point to 2.5 kg of wild mammal mass as their “own.” Let that sink in. You only have 2.5 kg (less than 6 pounds) of wild mammal out there somewhere. A single pet cat or dog generally weighs more. Not that long ago, it was more than you could carry. Now, it seems like hardly anything! I especially fear the implications for mammals should global food distribution be severely crippled.
  • As if the Enlightenment was not enough, in quick succession we joined another enormous river. One could say that the process of science opened the door to fossil fuels, but science and fossil fuels might be best described as a dynamic duo. Fossil fuels gave us the power to advance our science-amplified degree of control to an entirely new level. Resources that had been previously inaccessible became available. It became far easier to clear land for agriculture and other uses. We learned to make fertilizer from methane, unleashing unprecedented agricultural surpluses that inevitably resulted in a human population overshoot. Fossil-fueled furnaces led to steel, concrete, and other materials on a massive scale, paving the way to megacities and global trade. Science itself was amplified by having access to fossil fuels, via a flood of new devices and capabilities invented with—and powered by—cheap energy. Advances in science and technology in turn allowed greater access to buried fossil energy. This positive feedback arrangement facilitated runaway expansion of the enterprise, leading to a battery of hockey stick curves.
  • Energy has been fundamental to our story of growth. The various hockey stick curves over the last century or so are a reflection of energy and population. What’s more, human population itself is a reflection of energy, as mechanized, fertilized agriculture was made possible by fossil fuels. Since energy per capita has also increased like a hockey stick, the ecological impact (and many other metrics like GDP) takes on the shape of a super-exponential (still resembling a hockey stick on a logarithmic plot).
  • We have used [fossil fuels] to expand the human enterprise and population, knock down forests, destroy and fragment habitats, drive extinctions, and generally threaten the vitality of the planet. [But] “solving” the energy problem as fossil fuels give out is pretty frightening: how would it not simply perpetuate the ecological nosedive we have initiated? Only if we put ecological concerns above energy do we stand any chance of survival.
    • Ibid.
  • I acknowledge that cancer is a class of disease, and no universal cure is likely to emerge. But feel free to substitute any longstanding cause of death. […] In a sense, it is death that makes life special and worthy of celebration. […] What would a successful cure look like? Human lifespans would increase. All other things being equal, a reduced death rate means more humans on the planet, putting additional pressures on the entire community of life and further threatening the vitality of the planet—including humans, to be clear. Moreover, access to the cure would almost certainly be more available to the affluent half, who are already heavy users of resources and thus cause outsized harm to the planet. So a cure to cancer would serve to boost ecological destruction, in practice.
  • Truly, the end of modernity will probably be brutal for most of the 8 billion people on the planet, who will cling to what they know and fail to adapt. But even if they were mentally ready, the Earth is not ready to support 8 billion humans without a massive fossil subsidy, so human population will likely fall a lot in hard times.


  • In recent decades, support for family planning has waned, and global fertility decline has decelerated as a result. Projections calibrated across the decades of strong family planning support have not acknowledged this change and are consequently underestimating global population growth. Scenarios used to model sustainable futures have used overly optimistic population projections while inferring these outcomes will happen without targeted measures to bring them about. Unless political will is rapidly restored for voluntary family planning programs, the global population will almost certainly exceed 10 billion, rendering sustainable food security and a safe climate unachievable.
    • Jane N. O'Sullivan, "Demographic Delusions: World Population Growth Is Exceeding Most Projections and Jeopardising Scenarios for Sustainable Futures." World. 2023. 4(3). 545-568. doi:10.3390/world4030034


  • Putting an end to the population explosion will not of itself save the ecosphere, but not ending it will add greatly to the dangers the planet faces. The environment can sustain a quality of life for just so many people.
    • Michael Parenti, Blackshirts and Reds: Rational Fascism and the Overthrow of Communism. (1997), p. 155
  • Human overpopulation, the ever increasing power of our technology, and the demand of our omnicidal, neoliberal economic system of infinite growth on the basis of finite resources threaten the earth with total destruction.
    • Norm Phelps, quoted in The Politics of Total Liberation: Revolution for the 21st Century by Steven Best, (2014), p. ix


  • As human populations expand they necessarily appropriate ecological space required by other species. Human ‘competitive displacement’ of non-human organisms from their habitats and food sources is now the greatest contributing factor to plunging biodiversity. Consider that with only 0.01 % of total Earthly biomass, H. sapiens’ expansion has eliminated 83 % of wild animal and 50 % of natural plant biomass. From a fraction of 1 % ten millennia ago, humans now constitute 36 %, and our domestic livestock another 60 %, of the planet’s much expanded mammalian biomass compared to only 4 % for all wild species combined. Similarly, domestic poultry now comprise 70 % of Earth’s remaining avian biomass. Meanwhile, commercial fishing depletes the oceans at the expense of rapidly declining marine mammals and birds. Seabirds are the most threatened bird group, with a 70 % community-level population decline between 1950 and 2010.
  • In fact, conditions may not be ‘permitting’. Population estimates are usually based on demographic data alone with no consideration of exogenous factors. This is unrealistic. For living organisms, the fact of their own existence ensures that no environment or habitat remains ideal for long. As the subject population expands, it will invariably use up any crucial resource in fixed supply. Even renewable resources can be depleted once the population goes into ‘overshoot’, a situation in which aggregate consumption exceeds food species’ recovery rates or waste accumulation exceeds natural assimilative capacity. The rise and fall of reindeer populations introduced to two previously unoccupied (by reindeer) Pribilof Islands in the early 20th century is a classic example. Collapse was attributed to overgrazed food sources (primarily lichen) abetted by the stress of exceptionally cold winter.
  • ...for most of our species’ time on Earth—including most of the agricultural era—humanity’s natural propensity to expand has been held in check by negative feedback, e.g., food and other resource shortages, disease, and inter-group conflict. Circumstances changed with the scientific/industrial revolution, particularly the increasingly widespread use of fossil fuels. It took 200,000 – 350,000 years for human numbers to reach one billion early in the 19th Century, but only 200 years (as little as 1/1750th as much time!) to balloon another seven-fold by early in the 21st Century. Improvements in medicine, public sanitation, and population health contributed to this expansion, but coal, oil, and gas made it possible. Fossil fuels are the energetic means by which humans extract, transport, and transform the prodigious quantities of food and other material resources into the products needed to support our burgeoning billions. More than any other factor, fossil fuels enabled H. sapiens to eliminate or reduce normal negative feedbacks. Freed from historic constraints, our species was, at last, able to exhibit its full potential for geometric growth.
    • Ibid.
  • Almost all of today’s low-energy countries have a population density so great that it perpetuates dependence on intensive manual agriculture which alone can yield barely enough food for their people. They do not have enough acreage, per capita, to justify using domestic animals or farm machinery, although better seeds, better soil management, and better hand tools could bring some improvement. A very large part of their working population must nevertheless remain on the land, and this limits the amount of surplus energy that can be produced. Most of these countries must choose between using this small energy surplus to raise their very low standard of living or [to] postpone present rewards for the sake of future gain by investing the surplus in new industries. The choice is difficult because there is no guarantee that today’s denial may not prove to have been in vain. This is so because of the rapidity with which public health measures have reduced mortality rates, resulting in population growth as high or even higher than that of the high-energy nations. Theirs is a bitter choice; it accounts for much of their anti-Western feeling and may well portend a prolonged period of world instability.


  • It is apparently futile only to insist that the more back­ward countries restrict their birth rates. What is needed most of all is economic and technical assistance to these countries. This assistance must be of such scale and generosity that it is unlikely before the estrangement in the world and the egotistical, narrow-minded approach to relations between nations and races are eliminated.
    • Andrei Sakharov, Progress, Coexistence and Intellectual Freedom, Ch 5 Hunger and Overpopulation (and the Psychology of Racism) (1968)
  • Government policy, legislation on the family and marriage, and propaganda should not encourage an increase in the birth rates of advanced countries while demanding that it be curtailed in underdeveloped countries that are receiving assistance. Such a two-faced game would produce nothing but bitterness and nationalism.
    • Ibid.
  • I want to emphasize that the question of regulating birth rates is highly complex and that any standardized, dogmatic solution "for all time and all peoples" would be wrong.
    • Ibid.
  • ...increasingly, technology has come up against the law of unexpected consequences. Advances in health care have lengthened life spans, lowered infant-mortality rates, and, thus, aggravated the population problem.
  • Erroneous belief about population growth has cost dearly. In poor countries, it has directed attention away from the factor that we now know is central in a country's economic development, its economic and political system. And in rich countries, misdirected attention to population growth and its... consequence of natural-resource shortages has caused waste through such programs as now-abandoned synthetic fuel programs, and the useless development of airplanes that would be appropriate for an age of greater scarcity.
  • Adding more people causes problems, but people are also the means to solve these problems. The main fuel to speed our progress is our stock of knowledge, and the brake is our lack of imagination. The ultimate resource is people – skilled, spirited, and hopeful people who will exert their wills and imaginations for their own benefit, and inevitably they will benefit not only themselves but the rest of us as well.
  • Capitalist elites seeking to increase the size of their labour force used pro-natalist state policies to prevent women from practicing family planning. [...] We should not ignore the relationship between population growth and ecology, but we must not treat these as operating in a social and political vacuum.


  • History upon Terra tells us what horrors follow upon religious mandates of unlimited reproduction.
  • Given the Maoist position that a large population was a “resource”, rather than a burden, for the Communist state, it was politically incorrect to advocate population control [either by diet or medicine].
    • Christopher K. Tong, “The Paradox of China’s Sustainability,” Chinese Environmental Humanities (2019)



  • [There's] too many people making too much muck and too much noise with too little space to do it in.
    • Keith Waterhouse, "End of the Rainbow", Daily Mirror (August 17, 1970), republished in Mondays, Thursdays (1976)
  • Homo sapiens’ appetite is gargantuan. As we strive to get at dwindling resources for ever more people, we dig deeper into the Earth, blow the tops of mountains, divert rivers, cut down forests and pave over swaths of land. We fill the land, water, and air with our pollution. We’re driving record numbers of species to extinction and decimating others with activities from chemical poisoning to hunting for bushmeat, or simply by taking over their habitat.
  • While the word “sustainable” has become popular, growing human numbers and activities are anything but. Increasing awareness of our impact has led to developments in renewable energy, recycling, earth-friendly farming and more. There have also been spectacular advances in family planning. But powerful—notably religious—opposition has kept governments and international bodies from actively promoting small families and prevented hundreds of millions of women who would plan their families from having access to modern methods.
    • Ibid.
  • Those who deny that overpopulation is a problem say the poor don’t consume much. Yet the poor want nothing more than to consume more, as proved by India and China. Who can blame them? And a burgeoning number of desperately poor people does have a major impact: they cut down forests to grow food, drain rivers, deplete aquifers, and overfish and over-hunt in their local area. But make these points and you’ll be accused of blaming the poor for the problems of the rich.
    • Ibid.
  • ...the gains of low infant and maternal mortality and rises in population longevity—brought about in great part by harnessing fossil fuels, the agricultural revolution, modernization, and disease and injury reduction efforts—in many instances impedes rather than facilitates moving toward sustainable living. It can be argued from the ecological perspective that most public health efforts, as humanitarian as they are by intention and immediate effect, through accelerating population pressures on the environment are paradoxically hastening the destruction of the earth's habitat on which the next generation of humanity depends. It raises the concern that our perceived gains may be only illusory and temporary, with huge but unmeasured and unlinked environmental costs that will eventually lead to shorter lives of misery for our descendants.
    • Harold B. Weiss, "Overshoot" in Public Health Reports (January-February 2009).
  • The pattern of human population growth in the 20th century was more bacterial than primate. When Homo sapiens passed the six billion mark we had already exceeded by perhaps as much as 100 times the biomass of any large animal species that had ever existed on the land. We and the rest of life cannot afford another one hundred years like that.


  • According to the IEA, 1.6 billion people live without electricity. Much of Africa and Asia still rely on biomass as their primary source of energy, yet have very high population growth rates. How can there be a correlation between energy and population in these instances? While many developing world countries remain low energy societies, they, and their population growth rates, are impacted by high energy societies. Their primary energy sources may still be traditional biomass, but their population growth is due in large part to abundant oil and gas supplies. Vaccines and antibiotics that reduce third world mortality are discovered, produced and distributed with first world energy, and oil contributes at every step. Fertilisers, pesticides and herbicides that aided the Green Revolution in much of the developing world could not have been produced without large oil and gas inputs. The aeroplanes, boats and trains that deliver and distribute food all run on oil. While the commercialisation of higher quality energy sources may be very unevenly distributed, the societies that adopt new energy sources, high energy societies, have a profound impact on those societies that remain low energy societies, and these impacted populations then become part of Coal, Oil or Natural Gas Populations.
  • Just 11,000 years ago, there were only roughly 5 million humans who lived on the planet Earth. The initial population growth was slow, due largely to the way humans were living—by hunting. Such lifestyle limited the size of family for practical reasons. A woman on the move cannot carry more than one infant along with her household baggage. When simple birth control means-often abstention from sex failed, a woman may elect abortion or, more commonly, infanticide to limit the family size. Further, a high mortality among the very young, the old, the ill and the disabled acted as a natural resistance to a rapid population growth. Thus it took over one million years for human population to reach the one billion mark. But the second billion was added in about 100 years, the third billion in 50 years, the fourth in 15 years, and the fifth in 12 years. Ever since humans became sedentary, some limits over the family size were lifted. With the development of agriculture, children may have become more of an asset to their families in helping with farming and other chores. By the beginning of the Christian era, human population grew to about 130 million, distributed all over the Earth. By 1650, the world population had reached 500 million. The process of industrialization had begun, bringing about profound changes over the lives of humans and their interactions with the natural world. With improved living standard, lowered death rate and prolonged life expectancy, human population grew exponentially. By 1999 there were about 6 billion people, comparing with 2.5 billion in 1950. The world population is well on its way to 7 billion with an annual growth rate of over 90 million.

See also[edit]

External links[edit]

Wikipedia has an article about: