# Stephen Wolfram

Jump to navigation
Jump to search

**Stephen Wolfram** (born 29 August 1959) is a British scientist known for his work in theoretical particle physics, cellular automata, complexity theory, and computer algebra. He is the creator of the computer program Mathematica.

This scientist article is a stub. You can help Wikiquote by expanding it. |

## Quotes[edit]

- Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time behaviour are undecidable.
- (January 1984)"Universality and complexity in cellular automata".
*Physica D: Nonlinear Phenomena***10**(1–2): 1–35. DOI:10.1016/0167-2789(84)90245-8.

- (January 1984)"Universality and complexity in cellular automata".

- Computational reducibility may well be the exception rather than the rule: Most physical questions may be answerable only through irreducible amounts of computation. Those that concern idealized limits of infinite time, volume, or numerical precision can require arbitrarily long computations, and so be formally undecidable.
- (1985). "Undecidability and intractability in theoretical physics".
*Physical Review Letters***54**(8): 735–738. DOI:10.1103/PhysRevLett.54.735.

- (1985). "Undecidability and intractability in theoretical physics".

**Problem 9. What is the correspondence between cellular automata and continuous systems?**

Cellular automatat are discrete in several respects. First, they consist of a discrete spatial lattice of sites. Second, they evolve in discrete steps. And finally, each site has only a finite discrete set of possible values.

The first two forms of discreteness are addressed in the numerical analysis of approximate solutions to, say, differential equations. ...

The third form of discreteness in cellular automata is not so familiar from numerical analysis. It is an extreme form of round-off, in which each "number" can have only a few possible values (rather than the usual 2^{16}or 2^{32}).- (1985). "Twenty problems in the Theory of Cellular Automata".
*stephenwolfram.com*. (originally published in 1985 in*Physica Scripta***T9**: 170–183)

- (1985). "Twenty problems in the Theory of Cellular Automata".

- It was the spring of 1978 and I was 18 years old. I’d been publishing papers on particle physics for a few years, and had gotten quite known around the international particle physics community (and, yes, it took decades to live down my teenage-particle-physicist persona). I was in England, but planned to soon go to graduate school in the US, and was choosing between Caltech and Princeton. And one weekend afternoon when I was about to go out, the phone rang. In those days, it was obvious if it was an international call. “This is Murray Gell-Mann”, the caller said, then launched into a monologue about why Caltech was the center of the universe for particle physics at the time.
- Remembering Murray Gell-Mann (1929–2019), Inventor of Quarks. Stephen Wolfram Blog (blog.stephenwolfram.com) (30 May 2019).

### "Computing a Theory of Everything" (2010)[edit]

- Stephen Wolfram (2010),
*Computing a theory of everything*TED conference talk in February 2010, posted in April 2010.

- I had a very selfish reason for building Mathematica. I wanted to use it myself, a bit like Galileo got to use his telescope four hundred years ago. But I wanted to look, not at the astronomical universe, but at the computational universe.

- It's always seemed like a big mystery how nature, seemingly so effortlessly, manages to produce so much that seems to us so complex. Well, I think we found its secret. It's just sampling what's out there in the computational universe.

- Could it be that some place out there in the computational universe, we might find our physical universe?

- I'm committed to seeing this project done. To see if within this decade we can finally hold in our hands the rule for our universe, and know where our universe lies in the space of all possible universes.

- I think Computation is destined to be the defining idea of our future.

## About Stephen Wolfram[edit]

- There’s a tradition of scientists approaching senility to come up with grand, improbable theories. Wolfram is unusual in that he’s doing this in his 40s.
- Freeman Dyson cited in: "Living a Paradigm Shift: Looking Back on Reactions to A New Kind of Science,"
*blog.stephenwolfram.com*May 11, 2012

- Freeman Dyson cited in: "Living a Paradigm Shift: Looking Back on Reactions to A New Kind of Science,"

- Stephen has gone out on a limb. He is proposing a paradigm shift. A new twist on everything."
- Gregory Chaitin as quoted by Edward Rothstein in (11 May 2002)"A Man Who Would Shake Up Science; Physicist Says He's Explained The Way Nature Operates".
*The New York Times*.

- Gregory Chaitin as quoted by Edward Rothstein in (11 May 2002)"A Man Who Would Shake Up Science; Physicist Says He's Explained The Way Nature Operates".

## External links[edit]

- Official website
- Wolfram, Stephen,
*A New Kind of Science*. Wolfram Media, Inc., May 14, 2002. ISBN 1-57955-008-8 - Stephen Wolfram at TED
- Works by or about Stephen Wolfram in libraries (WorldCat catalog)