From Wikiquote
Jump to navigation Jump to search

In particle physics, supersymmetry (SUSY) is a theory that links gravity with the other fundamental forces of nature by proposing a relationship between two basic classes of elementary particles: bosons, which have an integer-valued spin, and fermions, which have a half-integer spin. A type of spacetime symmetry, supersymmetry is a possible candidate for undiscovered particle physics, and seen as an elegant solution to many current problems in particle physics if confirmed correct, which could resolve various areas where current theories are believed to be incomplete. A supersymmetrical extension to the Standard Model would resolve major hierarchy problems within gauge theory, by guaranteeing that quadratic divergences of all orders will cancel out in perturbation theory.


  • If the Standard Model describes the world successfully, how can there be physics beyond it, such as supersymmetry? There are two reasons. First, the Standard Model does not explain aspects of the study of the large-scale universe, cosmology. For example, the Standard Model cannot explain why the universe is made of matter and not antimatter, nor can it explain what constitutes the dark matter of the universe. Supersymmetry suggests explanations for both of these mysteries. Second, the boundaries of physics have been changing. Now scientists ask not only how the world works (which the Standard Model answers) but why it works that way (which the Standard Model cannot answer). Einstein asked "why" earlier in the twentieth century, but only in the past decade or so have the "why" questions become normal scientific research in particle physics rather than philosophical afterthoughts.
  • The mathematical consistency of string theory depends crucially on supersymmetry, and it is very hard to find consistent solutions (quantum vacua) that do not preserve at least a portion of this supersymmetry. This prediction of string theory differs from the other two (general relativity and gauge theories) in that it really is a prediction. It is a generic feature of string theory that has not yet been discovered experimentally.
  • Of the proposed extensions to the Standard Model, supersymmetry (SUSY) has remained among the most popular for decades. It provides exactly the needed compensation to stabilize the Higgs mass, while additionally providing an ideal candidate for dark matter with a stable weakly interacting lightest supersymmetric particle (LSP).

External links[edit]

Wikipedia has an article about: