Axiomatic system

From Wikiquote
Jump to navigation Jump to search

An axiomatic system in mathematics is a set of axioms with rules of inference that allow theorems to be derived from the axioms.

Quotes[edit]

  • A recurring concern has been whether set theory, which speaks of infinite sets, refers to an existing reality, and if so how does one ‘know’ which axioms to accept. It is here that the greatest disparity of opinion exists (and the greatest possibility of using different consistent axiom systems).
    • Paul Cohen: (2005). "Skolem and pessimism about proof in mathematics". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363 (1835): 2407–2418. ISSN 1364-503X. DOI:10.1098/rsta.2005.1661. (quote from p. 2410)
  • The idea that theorems follow from the postulates does not correspond to simple observation. If the Pythagorean theorem were found to not follow from the postulates, we would again search for a way to alter the postulates until it was true. Euclid's postulates came from the Pythagorean theorem, not the other way around.
    • Richard Hamming, "The Unreasonable Effectiveness of Mathematics", The American Mathematical Monthly 87 (2), February 1980, pp. 81-90
  • The requisites for the axioms are various. They should be simple, in the sense that each axiom should enumerate one and only one statement. The total number of axioms should be few. A set of axioms must be consistent, that is to say, it must not be possible to deduce the contradictory of any axiom from the other axioms. According to the logical 'Law of Contradiction,' a set of entities cannot satisfy inconsistent axioms. Thus the existence theorem for a set of axioms proves their consistency. Seemingly this is the only possible method of proof of consistency.

External links[edit]

Wikipedia
Wikipedia has an article about:



Mathematics
Mathematicians
(by country)

AbelAnaxagorasArchimedesAristarchus of SamosAverroesArnoldBanachCantorCartanCohenDescartesDiophantusErdősEuclidEulerFourierGaussGödelGrassmannGrothendieckHamiltonHilbertHypatiaLagrangeLaplaceLeibnizMilnorNewtonvon NeumannNoetherPenrosePerelmanPoincaréPólyaPythagorasRiemannRussellSchwartzSerreTaoTarskiThalesTuringWilesWitten

Numbers

123360eπFibonacci numbersIrrational numberNegative numberNumberPrime numberQuaternion

Concepts

AbstractionAlgorithmsAxiomatic systemCompletenessDeductive reasoningDifferential equationDimensionEllipseElliptic curveExponential growthInfinityIntegrationGeodesicInductionProofPartial differential equationPrinciple of least actionPrisoner's dilemmaProbabilityRandomnessTheoremTopological spaceWave equation

Results

Euler's identityFermat's Last Theorem

Pure math

Abstract algebraAlgebraAnalysisAlgebraic geometry (Sheaf theory) • Algebraic topologyArithmeticCalculusCategory theoryCombinatoricsCommutative algebraComplex analysisDifferential calculusDifferential geometryDifferential topologyErgodic theoryFoundations of mathematicsFunctional analysisGame theoryGeometryGlobal analysisGraph theoryGroup theoryHarmonic analysisHomological algebraInvariant theoryLogicNon-Euclidean geometryNonstandard analysisNumber theoryNumerical analysisOperations researchRepresentation theoryRing theorySet theorySheaf theoryStatisticsSymplectic geometryTopology

Applied math

Computational fluid dynamicsEconometricsFluid mechanicsMathematical physics Science

History of math

Ancient Greek mathematicsEuclid's ElementsHistory of algebraHistory of calculusHistory of logarithmsIndian mathematicsPrincipia Mathematica

Other

Mathematics and mysticismMathematics educationMathematics, from the points of view of the Mathematician and of the PhysicistPhilosophy of mathematicsUnification in science and mathematics