Complex analysis

From Wikiquote
Jump to navigation Jump to search

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers.

Quotes[edit]

  • Le développement naturel de cette étude conduisit bientôt les géomètres à embrasser dans leurs recherches les valeurs imaginaires de la variable aussi bien que les valeurs réelles. La théorie de la série de Taylor, celle des fonctions elliptiques, la vaste doctrine de Cauchy firent éclater la fécondité de cette généralisation. Il apparut que, entre deux vérités du domaine réel, le chemin le plus facile et le plus court passe bien souvent par le domaine complexe.
    • The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable. The theory of Taylor series, that of elliptic functions, the vast field of Cauchy analysis, caused a burst of productivity derived from this generalization. It came to appear that, between two truths of the real domain, the easiest and shortest path quite often passes through the complex domain.
      • Paul Painlevé (1967) [1900]. Analyse des travaux scientifiques. Gauthier-Villars (reprinted by Librairie Scientifique et Technique, Albert Blanchard). ISBN 2853671313. 
  • At the beginning of the new millennium the most famous unsolved problem in complex analysis, if not in all of mathematics, is to determine whether the Riemann hypothesis holds.
  • The result has caught the imagination of most mathematicians because it is so unexpected, connecting two seemingly unrelated areas in mathematics; namely, number theory, which is the study of the discrete, and complex analysis, which deals with continuous processes.

External links[edit]

Wikipedia
Wikipedia has an article about: